Читать книгу Заболевания и травмы периферической нервной системы онлайн | страница 24
Также установлено, что ретроградные нейрональные изменения тем выраженнее, чем ближе к телу клетки произошла травма нервных волокон, что связано с количеством аксоплазмы, «ампутированной» от клетки.
Количественная оценка числа нейронов, погибающих в результате невротомии, показала, что в спинальных ганглиях гибнет около 50 %, а в передних рогах – от 6 до 83 % нейронов.
По данным M. Wells, U. Vaidya (1989), 75 % нейронов погибают после невротомии и 85 % выживают после компрессионного повреждения лицевого и подъязычного нервов. При этом ретроградные изменения более быстро и ярко протекают в чувствительных нейронах (особенно в малых клетках спинномозговых ганглиев), нежели в двигательных.
При этом не верифицируется вид гибели нейронов: программированная (апоптоз) или патологическая клеточная смерть (некроз), хотя прекращение жизнедеятельности клетки при апоптозе и некрозе имеет морфологические различия.
Так, для апоптоза характерны уменьшение размера клетки, конденсация цитоплазмы и внутриклеточных органелл, фрагментация клетки на апоптозные тельца, появление выпячиваний. В свою очередь, при некрозе вследствие нарушения барьерной функции наблюдаются вакуолизация, резкое набухание клеток, завершающееся лизисом.
Однако современный уровень знаний о молекулярных механизмах гибели нейрона явно недостаточен для понимания всех аспектов патогенеза травматических невропатий и плексопатий. Весьма вероятно, что в повреждении нейронов при травмах нервов и сплетений принимают участие два стандартных механизма – окислительный стресс и эксайтотоксичность, запускающие развитие некроза или апоптоза. Существенное влияние на возникновение и развитие реактивных изменений в нервной системе при травматических невропатиях и плексопатиях оказывает целый ряд белков и пептидов, которые модулируют ретроградные изменения, обеспечивают их взаимодействие и интеграцию вследствие участия во внутриклеточных биохимических процессах, а также через цАМФ как вторичный мессенджер.
Наиболее изученный из них – фактор роста нерва – синтезируется в тканях-мишенях (мышцы, кожа и другие), шванновских клетках, астроцитах, пирамидальных нейронах гиппокампа, нейронах коры и стриатума. ФРН осуществляет трофическую поддержку зрелых нейронов и модулирует процессы биосинтеза различных пептидов. Ретроградные изменения могут распространяться выше «родительского» нейрона, и даже на контралатеральную сторону вследствие транссинаптических эффектов в связанных с ним нейронах.