Читать книгу Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей онлайн | страница 14
Разумеется, не все стрелы летят по одной и той же параболе даже в отсутствие сопротивления воздуха, а планеты не сидят все на одной-единственной эллиптической орбите. Кроме собственно закона движения, важно и то, как я запустил стрелу (куда направил и с какой скоростью) и где именно находился и с какой скоростью двигался Марс, скажем, в 00:00:00 GMT 1 января 2000 г. Эти данные удачно называются начальными условиями. Они включают положения и скорости всего, что движется, в некоторый момент времени, который условно считается начальным. Решая уравнения движения для конкретных систем, мы каждый раз задаемся какими-то начальными условиями. Для разгоняющегося самолета это положение в начале полосы и нулевая скорость. Используя уравнения движения с учетом тяги, сопротивления воздуха в зависимости от скорости и подъемной силы в зависимости от скорости, мы можем определить, где и когда самолет оторвется от полосы.
Для сложных систем, как правило, ответ невозможно выразить в виде функции времени, записанной на бумаге обозримым образом. В таких случаях говорят, что «уравнения движения нельзя решить точно», но в этой фразе нет никакого глубокого философского смысла; это довольно технический момент, к тому же стимулирующий развитие как приближенных математических методов, так и компьютерных вычислений. Но для одинокой планеты, обращающейся вокруг звезды, по прекрасному математическому везению уравнения движения можно решить точно, и именно это Ньютон и проделал, с выдающимися последствиями.
Уравнения движения для одной планеты можно решить точно
*****Больше чем Кеплер. Ко временам Ньютона законы Кеплера можно было воспринимать как экспериментальный факт, т. е. результат наблюдений. Привнесенные в эту историю Ньютоном математика и дополнительная догадка о том, как действует гравитация, воспроизвели эллипсы для планет. Три закона Кеплера перестали быть разрозненными высказываниями и приобрели логическую связь между собой: все три оказались следствиями закона движения и закона тяготения. Слово «следствие» здесь означает математическую неизбежность: если верны второй закон Ньютона и закон тяготения Ньютона, то никак по-другому планеты двигаться не могут[18]. Точнее говоря, могут, но только не совсем планеты (которые одни только и входили в предмет вычислений Кеплера), а тела, прилетающие извне Солнечной системы и улетающие куда-то прочь из нее. Здесь произошло очередное маленькое чудо: с помощью логического анализа (математики) познание вышло за текущие пределы наблюдений. Математический вывод законов Кеплера в большой степени поддержал уверенность в том, что и догадки по поводу законов неплохи, и математика выбрана правильно. А затем та же математика стала для нас проводником, указывая на новые, ранее не наблюдавшиеся виды движения. Для тел вблизи Солнца их оказалось три (вместе с эллипсами), если не считать движения по прямой точно в направлении Солнца[19]. И буква, и дух метода исследования мира по схеме «причина – следствие» говорят, что нет никакой возможности принять одни выводы и отказаться от других – неважно, что другие виды движения не наблюдались. Вот все виды движения под действием притяжения к центральному телу (рис. 1.5).