Читать книгу Рассуждения о методе. Начала философии. Страсти души (сборник) онлайн | страница 10
Первое правило: не признавать ничего за истину, не убедившись в том самым очевидным образом, то есть надобно избегать поспешности в суждениях и предубеждений, не допуская в суждениях никаких понятий, кроме осознанных нами так ясно и отчетливо, что не оставалось бы ни малейшего повода к сомнению.
Второе правило: разделять каждый встречающийся затруднительный вопрос для решения его на столько частей, на сколько это возможно и удобно.
Третье правило: начинать обсуждение каждого вопроса в восходящем порядке, т. е. с простейших и легчайших понятий, переходя потом к самым сложным, причем необходимо предполагать связный порядок и там, где понятия сами собою не представляются в такой связи между собою, как предыдущие и последующие.
Последнее правило: во всем делать столь подробные исчисления[13] и обозрения настолько пространные, чтобы не оставалось никаких опасений относительно пропуска чего-либо.
очень хорошо понимал, что математические истины не принесут мне иной пользы, как дадут только навык моему уму довольствоваться истинными и не довольствоваться ложными доказательствами
Действительно, результатом найденных мною немногих правил была, смею сказать, такая легкость в разрешении всех вопросов геометрии и алгебры, что в два или три месяца занятия этими науками, при постоянном восхождении от простейшего и общего к сложному и частному и при обращении каждой найденной истины в основание для дальнейших разысканий, я не только разрешил задачи, казавшиеся мне прежде очень трудными, но даже подумал, наконец, что могу определить и в неизвестных мне теоремах, каким путем и до какой степени их возможно решить. Читатель не сочтет меня тщеславным по поводу этого заявления, если обратит внимание на то, что в каждом вопросе может быть одна только истина и что тот, кто нашел эту истину, знает настолько по вопросу, насколько вообще можно о нем знать. Так, например, ребенок, знающий арифметику и сделавший правильно сложение, может быть уверен, что нашел относительно полученной им суммы все доступное уму человеческому, потому что арифметический метод, научающий истинному порядку в исчислении всех условий задачи, придает правилам арифметики совершенную законченность.