Читать книгу Как не ошибаться онлайн | страница 31



Площадь такого бутерброда равна 1 × 1 = 1, значит, площадь каждого треугольника равна 1/2, а площадь вписанного квадрата составляет четыре раза по 1/2, то есть 2.

Кстати, предположим вы не знакомы с теоремой Пифагора. Так вот, на всякий случай сообщаю: вы ее все-таки знаете! Или как минимум знаете, что она должна гласить применительно к данному прямоугольному треугольнику. Ведь прямоугольный треугольник, представляющий собой нижнюю часть нашего бутерброда, точно такой же, как и верхний левый фрагмент вписанного квадрата. А его гипотенуза – сторона вписанного квадрата. Следовательно, если вы возведете длину гипотенузы в квадрат, то получите площадь вписанного квадрата, которая равна 2. Другими словами, длина гипотенузы есть число, квадрат которого равен 2, или, если использовать привычную и более лаконичную формулировку, квадратный корень из 2.

Вписанный квадрат полностью находится в пределах окружности. Если его площадь равна 2, площадь круга должна составлять минимум 2 единицы.

Теперь давайте нарисуем другой квадрат.



Этот квадрат, который обозначается термином «описанный квадрат», также касается окружности всего в четырех точках, но теперь окружность находится внутри него. Длина сторон такого квадрата равна 2 единицам, значит, его площадь составляет 4 единицы. Следовательно, теперь мы знаем, что площадь круга равна максимум 4 единицам.

Возможно, иллюстрация того, что число π должно находиться в пределах от 2 до 4, производит не такое уж большое впечатление. Но Архимед только начинает. Возьмите четыре вершины вписанного квадрата и обозначьте на окружности новые точки, равноудаленные от каждой пары смежных вершин. Теперь у вас на окружности восемь точек, расположенных на равном расстоянии друг от друга. Соединив их, вы получите вписанный восьмиугольник, или, если говорить на техническом языке, «стоп-сигнал».



Вычислить площадь вписанного восьмиугольника немного труднее, но я не собираюсь утруждать вас тригонометрией. Важно, что мы по-прежнему имеем дело с прямыми и вершинами, а не с кривыми, поэтому данную задачу можно было решить с помощью методов, которые были в распоряжении Архимеда. Так вот, площадь восьмиугольника в два раза больше квадратного корня из 2, то есть примерно 2,83.


Представленный фрагмент книги размещен по согласованию с распространителем легального контента ООО "ЛитРес" (не более 15% исходного текста). Если вы считаете, что размещение материала нарушает ваши или чьи-либо права, то сообщите нам об этом.